TPC Distortions & Calibrations

estimated magnitudes and our ability to correct

STAR TPC Review BNL, June 4-5, 2009

Outline

- Overview of the distortions
 - Description
 - Impacts of high luminosity (and aging)
- Correction techniques (calibrations)
 - Physics requirements
- Results (past and future prospects?)
- Summary

Distortions

- EM fields: non-uniformities are a reality
 - B field: small deviations (scale?), mapped, done
 - E field: surface & volume issues, static & volatile
 - The big three: (1) shorted field cage rings,
 (2) primary space charge, (3) gated grid ion leakage
- Electrostatics is known physics
 - Requirements: (1) model of the distortion,
 (2) measures/rulers (e.g. surveys, residuals)
 which keep pace with volatility

Field Cage Electrical Shorts

Potential stepped from cathode to anode

"Stripes" express potential inside the chamber

Field Cage Electrical Shorts

- Shorts have been a problem for several years now
 - Some fixed
 - Some not understood
- Worst threat comes from volatile shorting
 - Not a current problem
- Very unlikely a high luminosity issue
 - Unknown whether its an aging issue

SpaceCharge: model of charge

HIJET model of "event shape" for 200 GeV AuAu collisions matches radial distribution of zerobias data well for much of the runs.

SpaceCharge: model of charge

HIJET model of "event shape" for 200 GeV AuAu collisions matches radial distribution of zerobias data well for much of the runs.

SpaceCharge effect on sDCA

- All tracks go the same direction
 (pos. or neg.)
- Track charge independence
- Field dependence

sDCA = signed distance of closest approach

SpaceCharge effect on sDCA

GridLeak Field Effects

- Modeled sheets of charge
 - Relaxation done on custom 3D grid
 (plots assume Φ symmetry, but leak is 12-fold symmetry
 from grid shape)
 - E-field and distortion discontinuity at grid gap
- GridLeak scales as SpaceCharge!

Applied GridLeak Correction

Not perfect, but as good as design spec!

Distortions scale significantly reduced!

Projected pointing errors

opp500 is the TPC pointing error vs. luminosity (no corrections) worst pp200 (2008) pp500 ** dAu200 (2008) Possible: 25.1 cm Run 9 was a CuCu200 (2005) Possible: 19.2 cm AuAu200 (2007) good test Intermediate RHIC | Achieved ions (CuCu) RHIC I Projected RHIC II Projected * perhaps 10-1 Pointing error at other radii r [cm]: * Assumes x2.6 over RHIC I Err(r) = (1-(r/100))*Err(prim vtx, r=0)** pp500 \equiv pp200 \Rightarrow x2 $\hat{1}$ 25% worse than 10⁶ (used for pp) ZDC sum rate [Hz] 10⁵ 10⁵ (used for ions) ZDC coincidence rate [Hz] 10⁴ heavy ions

(AuAu, UU?)

Pointing resolution

- Important for using inner (silicon tracking, upgrades)
- More Discussion

Momentum resolution

Important for physics at high pt10

Biases can be more serious than smearingMore Discussion

Distortion Corrections

Distortion	Approximate Scale [microns]	Correction Scale [microns]
Twist (E-B alignment)	800	50
IFC Shift	100	50
Clock (East-West rotation)	800	50
Padrow 13	400	50
B field shape	800	50
Shorted Ring	2000 ^A	100 ^B
Space Charge	up to 5000 ^C	100-200 ^D
Grid Leak	up to 2500 ^C	100-200 ^D
Unknown	100??? 300???	100??? 300???

Overall contribution to δp_t/p_t ~ ¹/₄-³/₄% * p_t for TPC-only tracks (primary vtx, silicon help)

A. Larger (up to 5000) without compensating resistor.

B. Known to be ~400 microns in a region of the TPC not used for physics.

C. Luminosity dependent

D. Dataset dependent

CDR design was ~1%*pt

Momentum biases

- A very small bias can lead to a large effect
 - h-/h+ with a mere 0.005*pt^2 bias
- More discussion

Calibration first steps

- Non-volatile calibrations must be completed first (e.g. internal alignment, and w.r.t. B field)
 - Necessitates low luminosity data
 - RHIC was unable to deliver this during pp500 this year....the future?
- Field cage currents measure shorts
- SDCA and residuals tell us about the SpaceCharge and GridLeak

First steps to corrections

- Observables (sDCA) can tell you the distortion quantity (ions in the TPC due to SpaceCharge buildup + GridLeakage)
- Easy with "ideal" tracks
 - Little or no dependencies on reconstruction itself
 - Observable maps easily to distortion quantity
 - sDCA = C * f(Z) * (SpaceCharge + GridLeak)
 - Generally need many events for stats
 - Could be many <u>runs</u> for pp collisions!

First steps to corrections

- Observables (s distortion quar SpaceCharge k
- Easy with "idea
 - Little or no depe
 - Observable map

- sDCA = C * f(Z) * (SpaceCharge + GridLeak)
- Generally need many events for stats
 - Could be many <u>runs</u> for pp collisions!

Ionization: Scalers

- Ionization is linear with linear with scaler measures 0.018 of luminosity 0.012
- Points out problem runs
- Now using 1-second averages

STAR records scaler rates on Zero Degree Calorimeters (ZDCs) and Beam-Beam Counters (BBCs)

Volatility seen during AA

Pluctuations seen on the 1-secon time scale

More discussion

Performance Measures: sDCA

- Can't beat low luminosity, but holding steady at high luminosity:
 - Spread from5-9kHz appearsroughly uniform
 - No indication we can't go higher!

2004 AuAu at 200 GeV, all B fields

Performance Measures: sDCA

- Can't beat low luminosity, but holding steady at high luminosity:
 - E-by-E method performs worse due to statistics per unit time

2005 CuCu at 200 GeV, full field

Performance Measures: π^{-}/π^{+}

- TPC-measure
 of the ratio
 essentially flat
 all the way to
 p_T=12 GeV/c!
- Central triggers

 (taken at high luminosity) just about as good!

The Future: Up and Up (1)

- Higher luminosities
 - Can't even do tracking across TPC without some GridLeak correction
 - How close is our model to reality?
 - Differences will amplify with increasing luminosity.
 - How will the backgrounds change/grow/quell?
 - Not clear that the shielding has removed noncollision contributions
 - pp500 has been a valuable test...

pp500: getting pretty high

More Discussion

The Future: Up and Up (2)

- Higher DAQ rates
 - Increasing gating grid rates produced no notable change in SpaceCharge-like distortions(!)
 - Higher event rate might benefit the E-by-E approach
- Other techniques for SpaceCharge measures
 - Fixed detectors (GMT upgrade proposal)
 - Use identified pileup hits in the data (work in progress)

Back to the table...

- Analyses requirement: don't gain another √2
- What can we afford?
 - It is NOT the increasing distortions which hurt most, it is the increasing error of our understanding!
 - Room to increase the error on our luminosity-dependent corrections
 - Hard to say what will happen...

Distortion	Approximate Scale [microns]	Correction Scale [microns]
Twist	800	50
IFC Shift	100	50
Clock	800	50
Padrow 13	400	50
B field shape	800	50
Shorted Ring	2000 ^A	100 ^B
Space Charge	up to 5000 ^C	100-200 ^D
Grid Leak	up to 2500 ^C	100-200 ^D
Unknown	100??? 300???	100??? 300???

"Overall contribution to $\delta p_t/p_t \sim ^1/_4-^3/_4\%$ * p_t for TPC-only tracks (primary vtx, silicon help)"

- A. Larger (up to 5000) without compensating resistor.
- B. Known to be ~400 microns in a region of the TPC not used for physics.
- C. Luminosity dependent
- D. Dataset dependent

Our efforts are worthwhile!

- STAR TPC has <u>major</u> distortions with which we have been coping for years now (Physics produced!)
- Preliminary efforts appear successful with pp500, but we expect even higher luminosities and things could get worse for us
- We have some margin for further resolution error, but even small biases are problematic

Backgrounds

- Strong evidence for collider backgrounds:
 - calorimeter backgrounds, "straight-through" tracking, zerobias data, sDCA azimuthal distributions
 - Will shielding solve this problem for good?
 - Will we need to "map" the distortions?

